

Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade"

Sub-theme: Capacity building

Knowledge Gap Assessment and Coping Strategies by Farmers Against Fall Armyworm (*Spodoptera frugiperda* J.E. Smith) Infesting Maize in South Eastern and Coastal Kenya

Presented by: BONIFACE MWIRIGI Co Authors:

Muo Kasina (KALRO), Mary Guantai, (KEPHIS), Susan Njeri

www.africa-cope.org

INTRODUCTION

◆ Maize (Zea mays L.) is a major cereal crop in Africa

It is Kenya's main staple crop whose per capita consumption is 100 kg per annum (Yami et al., 2020) and it is consumed by over 85 % of the population

◆It is used as human food; 32 % and 35 % of protein & dietary energy consumption respectively (Groote et al., 2011) & animal feed; stovers and also as a source of income

Production of maize has been threatened by invasion of fall armyworm (FAW) (Spodoptera frugiperda)

This has resulted in increased production costs and low crop productivity leading to food insecurity

Production of maize has recently been constrained by invasion of fall armyworm

Since the first report of invasion, the pest has been reported in 42 out of 47 counties of Kenya(Sisay *et al.*, 2018).

Losses caused by FAW on maize in Kenya are estimated at 4.1 to 17.7 million tonnes/year (US\$ 1088 to US\$ 4661 million) (Rwomushana et al., 2018)

There is however, lack of information about farmers' knowledge, perceptions, and coping practices limiting design of effective FAW management programs for effective control

This has also hindered implementation of effective FAW management programs

The present study therefore aims at considering various knowledge gaps and practices undertaken by farmers to effectively design appropriate management strategies

- •Maize is a key determinant of food security in Kenya as it is the main staple food
- South Eastern and Coastal Kenya experiences harsh climatic conditions ; low food productivity
- Maize suited in almost all agro-ecological zones; can be used as a principal crop to curb food insecurity in the areas
- High temperatures in South Eastern (14°C -32°C) & coastal Kenya (27 °C-30 °C) that favours pest multiplication; crop damage & yield losses
- •Yield losses are incurred despite strategies recently developed to manage the pest
- A survey therefore is needed to establish existing knowledge levels and responses towards the pest important to enable researchers to understand problems faced by the farmers in managing the pest
- Will help researchers to develop sustainable pest management approaches based on farmers knowledge & needs

General objective

To assess Knowledge gap and coping strategies by farmers against fall armyworm (Spodoptera

frugiperda J.E. Smith) infesting maize in Southeastern and Coastal Kenya

Methodology

Methodology cont'd

Data collection

- Respondents selection based on purposive sampling method
- Farmers actively growing maize
- 8 FGDs each comprising of between 10 20 members from their respective wards.
- Tool; An open-ended questionnaire

Data collected;

- Lifestyle characteristics ; Age, gender, education, marital status & main occupation
- Guiding questions; maize production, level of knowledge of FAW & its management, impact of FAW on maize yield & income.

Data analysis

- Excel spreadsheet; to determine means for responses across the different FGDs.
- The Statplus statistical software for Excel used for basic analysis ;means and frequencies.
- Standard deviation used to show differences at 95% confidence level.

Demographic characteristics

Group	Total farmers	Percent female	Percent youth	Percent married	
Mwakuhenga	16	62.5	6.3	93.8	
Ikanga Voi	25	80	20	96	
Masyungwa	11	64	9.1	100	
Ikanga Kitui	15	66.7	0	100	
Mosa	12	58.3	16.7	83.3	
Kyanika	17	76.5	5.9	94.1	
Kwa Muli	15	73.3	13.3	100	
Kavalula & Ngengi	23	56.5	4.3	100	
Mean	16.75	67.225	9.45	95.9	
SD	4.920801	8.567505	6.731164	5.777543	

Production details

Group	Total No. maize varietie s	% farmers certifie d seeds	% farmers maize for food and selling	Average 90-kg bags per farmer/a cre
Mwakuhenga-	7	93.8	48	11
Ikanga Voi-	6	60	24	9
Masyungwa	4	27.3	9.1	8
Ikanga Kitui	8	100	53.3	10
Mosa	8	50	25	20
Kyanika	6	94.1	5.9	9
Kwa Muli	8	100	100	20
Kavalula & Ngengi	6	100	100	10
Mean	6.625	78.15	45.6625	12.125
SD	1.4078 86	28.3829 9	37.3841	4.94072

8

Results cont'

Knowledge of FAW and pesticide use					Challenges of using pesticides.						
Group	% Farmers encounte red FAW	Non- pesticide controls measures	Total pesticide molecule s	Frequency of pesticide application	No of groups Killing of plants						
Mwakuhe	100	5	8	2	Scorching effect on plants Poisoning of animal food						
nga Ikanga Voi	100	6	0	0	Burning effect on maize Hand cracking						
Masyung wa	54.5	2	7	1.5	Nose blockage						
Ikanga Kitui	100	0	4	2.5	Skin spots						
Mosa	100	3	3	5	Face itching						
Kyanika	94.1	0	3	1.5	Skin irritation						
Kwa Muli	100	4	7	2	Killing of friendly insects.						
Ngengi	100	2	4	3.5	Expensive						
Mean SD	93.575 15.9231	2.75 2.187628	4.5 2.672612	2.25 1.488048	0 2 4 6						

Results cont'

Other coping practices used by farmers in managing fall armyworm

✤Handpicking and crushing

- ✤Smoking using local herbs
- Botanical concoctions of local herbs
- ♦ Use of soil
- ♦ Use of ash
- ✤ Various domestic soaps for laundry

Other challenges faced by respondents in farming

LARVAL PARASITOIDS

Results cont'

Fall armyworm invasion and yield loss at farm l	ı leve	at farm	loss	vield	and	invasion	vworm	arm	Fall
---	--------	---------	------	-------	-----	----------	-------	-----	------

FGD	On set of FAW infestation (month) after germinatio n	% Yield loss		Mwak		Maguup		V		Kwa	Kavalula&	Avora
Mwakuhe nga	2	67.5	Groups/ stage	uheng a	Ikanga Voi	Masyun gwa	Ikanga Kitui	Mosa	Kyanika	Muli	Ngengi	Avera ge
nga Ikanga Voi Masyung	3 2	55 37.5	Faa	18.75	0.0	0.0	20.00	0.0	0.0	66 67	1 25	27.4
wa	2		Egg	16.75	0.0	0.0	20.00	0.0	0.0	66.67	4.55	27.4
Ikanga Kitui	1	53.8	Larva	100.0	100.0	0.00	86.67	100.0	100.0	100.0	100.00	85.8
Mosa Kyanika	$\frac{1}{2}$	57.5 32.5		100.0	100.0	0.00	00.07	100.0	100.0	100.0	100.00	05.0
Kwa Muli	1	80	- -									
Ngengi	1	50	Pupa	75.00	100.0	0.00	0.00	0.00	0.00	100.0	17.39	36.5
Mean SD	1.625	54.225										
50	0.744024	15.22045	Adult	0.00	0.00	0.00	0.00	0.00	0.00	53.33	43.48	12.1

>There is limited knowledge about the biology and ecology of fall armyworm

>Apart from the heavy pesticide used, farmers have other pest control practices that can be enhanced to improve fall armyworm management.

Recommendations

The study recommends design of FAW control strategies based on farmers knowledge gaps and practices

Farmers should be trained on identification of other FAW stages besides the larval stage for effective monitoring and timely application of control strategies

Acknowledgements

Theme: "Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org

For more information, please contact:

www.africa-cope.org www.kephis.org Facebook.com/3rd phytosanitary Conference 2020 Twitter: @3rdphytoconf

Theme: Enhancing Phytosanitary Systems for Healthy Plants, Safe & Sustainable Trade" www.africa-cope.org